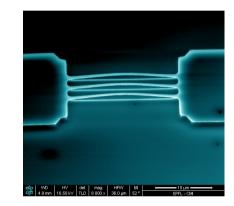
Electrical Engineering at a Crossroad:

Challenges and Opportunities


Giovanni De Micheli

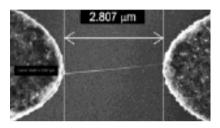
A minimalist view

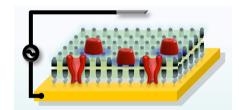
- Electrical Engineers deal with:
- Devices:
 - The switch
 - The wire
 - The source
 - The storage
- Systems:
 - The power grid
 - Computers and Internet
 - Ubiquitous communication
 - Cyber-physical systems

A first set of questions

- Is EE science or technology?
 - Is there space for fundamental research?
- Are system applications driven by the economy?
 - Is the research agenda driven by the economy?
- Are these the right questions to ask?

The case of Computer Science and Engineering


- The Hartmanis committee was asked to examine the fundamental nature of CS&E
- The Hartmanis committee reported:
 - CS&E is coming of age
 - Intellectually challenging problems arise outside CS&E per se
 - The traditional separation of basic research, applied research and development is dubious
 - The ubiquity of computing places a premium on the widest diffusion – to be achieved via undergraduate education
- The debate between *fundamental discipline* and *service discipline* inflamed researchers



Looking for scientific novelty

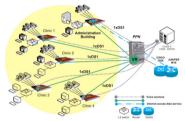
The technology push:

- New materials:
 - Carbon, organic electronics
- Nano-devices:
 - Quantum confinement effects
- Sensors:
 - Transduction mechanisms
- The boundary conditions:
 - Societal changes over 50 years of EE
 - From (transistor)-*radio days* to *facebook*
 - Computing and communication technologies bring a new universal perspective

Looking for impact

The economic and societal pull:

- World Economic Forum (Davos 10)
- Improve the State of the World: Rethink, Redesign, Rebuild



- Summit on the global agenda (Dubai 09)
 - Most pressing technological/economic issues affecting the world growth
 - Directions for young generation
 - From students to leaders
- Strong overlap with broad EE issues
 - Information technology boosts the value of specific advances in devices to achieve a global perspective

The global agenda

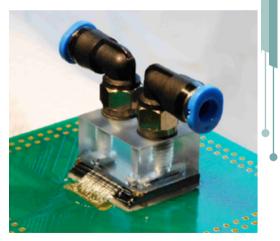
- Ensuring sustainability
 - Smart energy production and distribution
 - Intelligent water management
- Strengthening welfare
 - Better, affordable health care and wellness
 - Dealing with ageing and young population
- Mitigating risks
 - Preventing catastrophes and pandemics
 - Monitoring the environment
- Enhancing security
 - Future of the internet
 - Preventing cyber and physical attacks

A first answer

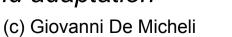
- Electrical engineering must strike the balance between innovation and impact
 - New electrical phenomena
 - From photonics to electro-chemistry
 - Means to achieve societal/economic impact
 - From wireless to Internet
- Connectivity is the paradigm
 - Smart grid to deliver energy
 - Connecting humans to enhance wellness
 - Monitoring the planet
 - Providing security and mitigating risks

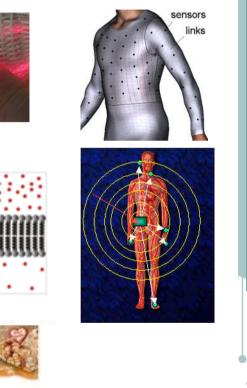
The drivers

Smart energy

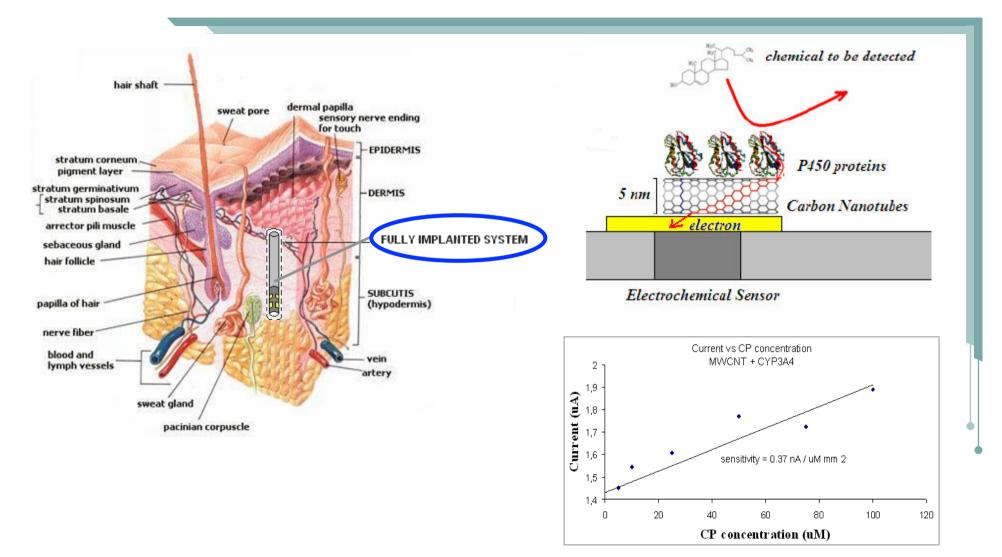

- Smart grid
 - Match supply and demand of energy in a diversified environment
- Smart home/workplace
 - Optimize energy consumption according to need
- Smart data centers
 - Provide information flow and distribution with limited energy cost
- Challenges:
 - Real time response
 - Workload prediction
 - Optimum control

Example: data centers

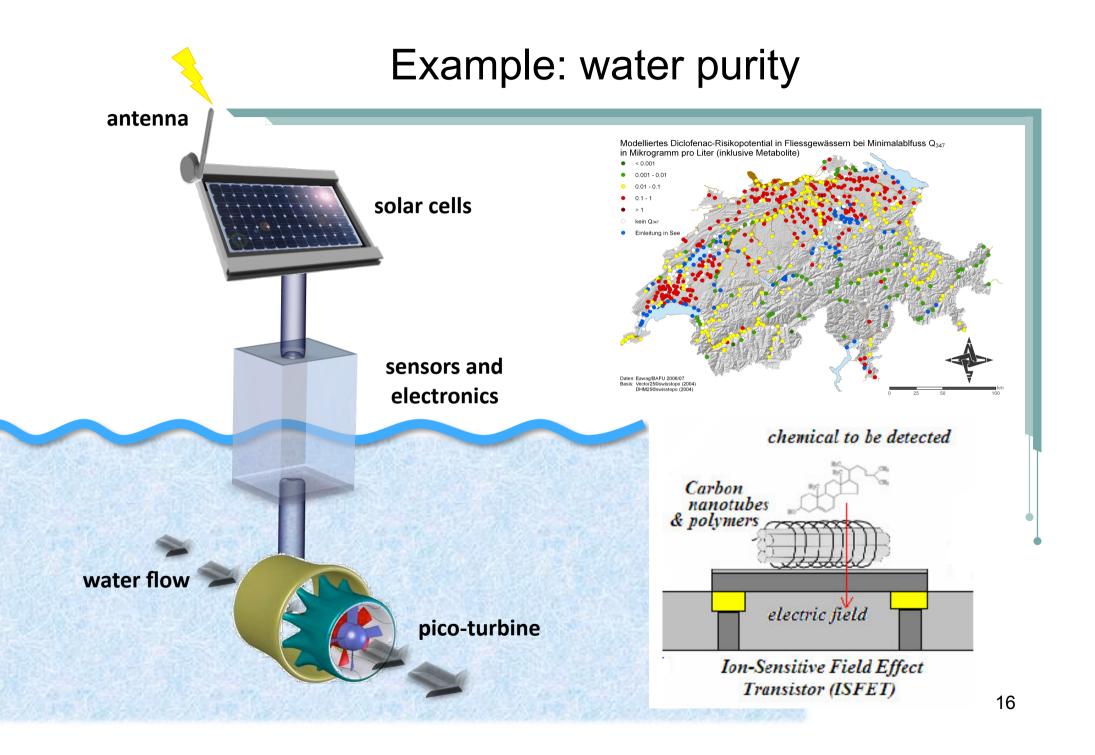

- Data centers are key to services like Google, Yahoo!, Microsoft...
 - Information is economic power
- Data centers consume 2-4% of world energy
 - Computation, storage and cooling
 - Localization of data centers
- Green data centers:
 - Dynamic power management
 - Hardware control and cooling
 - Hw/Sw co-design:
 - Virtualization to save energy
 - Online learning
- Challenges:
 - Energy vs availability vs latency



Electronic health

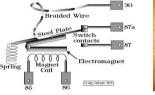

- Body monitoring
 - Biosensors
 - Body area networks
 - Smart textiles
- Clinical support
 - Remote diagnosis
 - Drug delivery
- Prevention
 - Monitoring nutrition
- Challenges:
 - Non-invasiveness
 - Safety and security
 - Autonomy and adaptation

Open

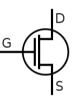

Example: smart implants

Environment

- Monitoring heat, wind, vibration
 - Earthquake, flood prediction
 - Movement of glaciers
- Controlling pollution
 - Water, air purity
 - Bio-contamination
- Emergency relief control
 - Real time support for reaction
- Challenges:
 - Seamless presence
 - Biodegradability
 - Autonomous and adaptive operation

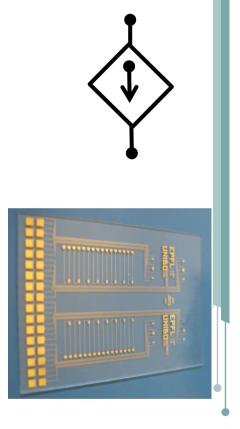


The technology

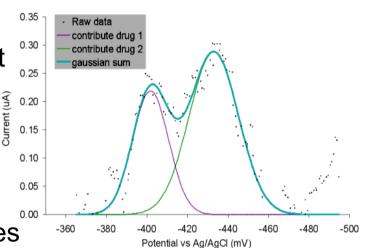


The technology support

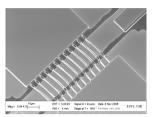
- The switch
 - The link between information science and electronics
 - Relay
 - Triode
 - Transistor



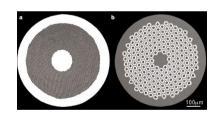
- CNT nano-mechanical switches
- Challenges:
 - Cutoff frequency: f_{cut}
 - Leakage: I_{on}/I_{off}
 - The coupling gain: g_m


Transconductance and transductors

- Transconductance sensors
 - Map target concentration into current
- Example:
 - DNA, protein, pH, gas, etc
 - Semiconductor devices can be extended to sense a wide set of targets
- Challenges:
 - Sensitivity
 - Specitivity
 - Reliability, energy cost, parallelism

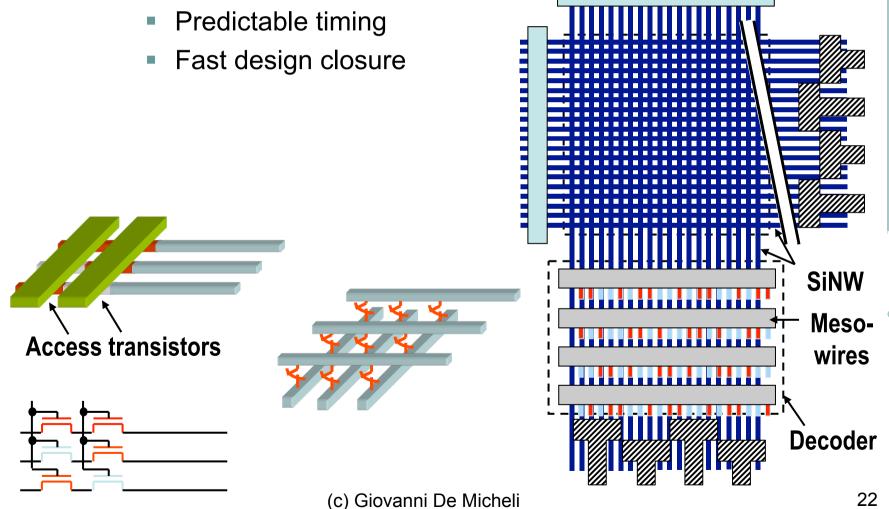

Smarter, better sensors

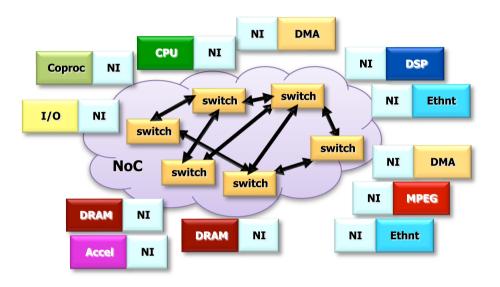

- Evolution in sensor field:
 - From single target to multi-target
 - From static to portable
 - Low-power sensing
 - Couple bio-chemistry to data acquisition
 - Use parallel sensing architectures
- Integrate in situ data processing
- Co-design of sensors within wireless sensor networks

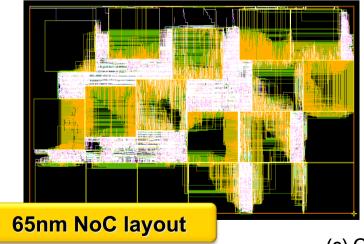


The wire

- From nanowires to terawires
- Nanowires:
 - Silicon, CNT and other materials
 - Top down and bottom-up fabrication
- Terawires
 - Materials for electric power lines:
 - High T_c superconductors
- Challenges:
 - Interfaces to the very small and very large
 - Matching voltage, current, impedence
 - Integrate transport with switching





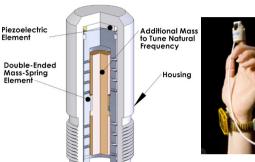

Example: integrate wires and switches

Modular on-chip communication fabric

Advantages:

- Easier physical desing
- Guaranteed timing closure
- Higher bandwidth
- Lower power consumption

Challenges:


- DVFS / multiple domains
- 3D stacked NoCs
- Topology design
- Quality of Service

The source

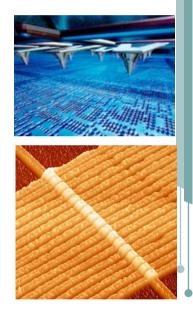
- Electric power is always in demand
 - 15TW total power consumption
 - Environmental and distribution issues are the limit
- Fixed systems:
 - Energy cost, heat, environmental issues
- Mobile systems:
 - Longevity, battery limitations, weight
- As demand for information and services increases, we need to raise the efficiency of electrical production, transport and consumption

Non-conventional sources

- Energy harvesting
 - Mechanical
 - Heat difference
 - Solar

- Power transmission
 - Use magnetic or electromagnetic coupling
 - Transmit data and power
- Challenges:
 - Harvesters generate 10-100X less energy than needed
 - Increasing amount of EM radiation
 - Fluctuation of available energy

Energy storage


- Large-capacity energy storage
 - Good solutions for hydroelectric energy

- Other approaches include thermal and compressed air
- Portable energy storage
 - New battery technologies, e.g., semiconductor
 - Hydrogen cycle
 - Supercapacitors provide effective solutions at low voltages
- Challenges:
 - A spectrum of solutions for storing various capacities
 - Storage capacity improvement lags energy demands
 - Dynamic power management

Data storage

- Information technology requires massive data storage
 - DRAM, Flash, hard disks, optical storage
- Novel materials
 - Phase change and ferroelectric memories
 - Millipede technology
- Novel devices
 - Memristor (Polymers, TiO₂)
- Challenges:
 - High density, low power, low cost
 - Pushing the limits of semiconductors
 - Interfacing with data processing

Back to the key question

Is EE a service or a fundamental discipline?

(c) Giovanni De Micheli

A better answer

- EE involves a rich set of technological issues
 - New devices exploit new physical phenomena
 - Much space is still left for scientific discovery
- Application areas address societal needs
 - Impact of EE technologies is increasingly stronger
 - We need a systems view of electronic devices
- Discipline crossbreeding favors new discoveries
 - New scientific areas at the intersection of disciplines
 - No distinction between service and fundamental discipline
- What else ?

Education

- Form electrical engineers who master both:
 - The standard electrical technologies
 - Holistic view of systems engineering
- Attract, retain and retrain engineers
 - A hard challenge for western cultures
 - Gender gap
- Redesign curricula driven by applications
 - Share educational load across campuses

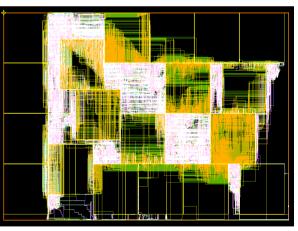
(c) Giovanni De Micheli

Cooperative engineering

- Bringing together engineers/scientists/doctors with different skills
 - Communication and vocabulary
 - Abstraction and modularity
- Collaborative programs and centers

Conclusions

- Are we really at a crossroad?
 - EE provides the enabling technology for developing systems applications
 - There are many growth paths which are intellectually and financially rewarding



- We need to foster technology crossbreeding of EE
 - Computational, communication and natural sciences
- Research and education must evolve
 - Form graduates with both deep and broad knowledge
 - Collaborative research and educational structures must bridge the gap among traditional disciplines

Thank you

